
Object detection using DOTA
dataset and training using
YOLOV8

ANN NIBANA S L

1 Dataset Preparation and Conversion

➢ Downloaded DOTA-v1.0 dataset and extracted image and labelTxt.

➢ Selected 40 images with aeroplane using a Python script.

➢ Used dotadevkit to convert the dataset to COCO format → generated

DOTA_1.0.json.

➢ Split the dataset:

➢ 30 images to images/train

➢ 10 images to images/validation

➢ Created corresponding COCO-style JSON files: instances_train.json,
instances_val.json

2. Folder Structure and Configuration

Organized dataset as:

mini_train/

├── images/

│ ├── train/

│ └── val/

├── labels/

│ ├── train/

│ └── val/

├── annotations/

│ ├── instances_train.json

│ └── instances_val.json

Created a data.yaml file

3. YOLOv8 Setup, & Training

➢Installed Python 3.9 and YOLOv8 using pip install ultralytics.

➢ Resolved:

➢ CUDA compatibility (GPU verified)

➢ Fixed class ID issues in label .txt files (converted all class IDs to 0).

➢ Resized all training/validation images to 640×640.

4. Training
Models

Epoch10(none)

Epoch30(11)

Epoch50(29)

Verification and Display in JupyterLab

In this JupyterLab environment, a notebook
named demo.ipynb is used to visually inspect an
input image before making predictions.

The script utilizes IPython’s display and Image
modules to define the image path (P1116.png)
and render it inline within the notebook
interface.

Loads and displays a sample input image using
the IPython.display module.

Renders aerial imagery inline for visual
confirmation before detection.

0.5: Detects only highly confident objects – fewer boxes,

higher precision.

0.4: Balanced detection – includes moderately confident

predictions with acceptable accuracy.

Confidence Threshold Variations
Tested thresholds: 0.25, 0.4, 0.5 on the same input image.

Observation: Lowering the threshold increases sensitivity (more detections) but

decreases precision.

0.25: Captures even low-confidence predictions –

more boxes, but also more false positives.

Cell 2 performs object detection using a
YOLOv8 model within JupyterLab:
• Loads trained YOLOv8 model (best.pt).
• Runs predictions with a confidence
threshold of 0.45.
• Displays annotated images inline for
visual analysis.

Detection results

Conclusion:

This project demonstrates the application of YOLOv8 for aerial object
detection using a subset of the DOTA-v1.0 dataset.
• The workflow involved dataset preparation, COCO format conversion,

training the model for 50 epochs, and evaluating detection accuracy.
• Predictions were visualized through annotated outputs and confusion

matrices, providing insights into model performance.
• An interactive JupyterLab environment was developed for streamlined

testing, visualization, and reproducibility of results.

	Slide 1: Object detection using DOTA dataset and training using YOLOV8
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

