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Object detection using DOTA dataset and training using YOLOV8. 

This project focuses on detecting airplanes in aerial imagery using a subset of the DOTA-v1.0 

dataset and training a YOLOv8 model. The dataset was converted to COCO format, structured, 

and split into training and validation sets. After resolving label and compatibility issues, the model 

trained for 50 epochs chosen. Predictions were generated and visualized using a custom output 

directory, demonstrating object detection. 

Workflow 

The workflow included data preparation, format conversion, model training with YOLOv8s and 

performance evaluation. 

 

1. Data Preparation and Processing 

The dataset preparation began by acquiring the DOTA-v1.0 dataset, which includes high-

resolution aerial images and corresponding labelTxt annotations. These annotations contain 

object class labels and oriented bounding box coordinates. From this large dataset, a subset of 

40 images containing the class "airplane" was selected using a Python script to reduce 

computational load and streamline the model training process. This targeted selection ensured 

the model would focus solely on detecting airplanes, improving efficiency for a class-specific 

object detection task. 

Once selected, the data needed to be converted into a format compatible with YOLOv8. Using 

the DOTA DevKit, the labelTxt annotations were transformed into the standard COCO format, 

producing a DOTA_1.0.json file containing image metadata, bounding boxes  and class labels. 

The dataset was then split into two subsets: 30 images allocated for training (images/train) and 
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10 for validation (images/validation). COCO-style JSON files were manually or 

programmatically generated to align with these splits. This structured preparation ensured 

smooth downstream processing with YOLOv8s. 

Folder structure 

The folder structure is organized to align with YOLOv8’s training requirements. The 

mini_train/ directory contains subfolders for images/ and labels/, each divided into train and 

val sets, separating training and validation data clearly. The annotations/ folder holds COCO-

format JSON files, which are useful for conversions. A data.yaml file ties everything together 

by specifying image paths and class names, enabling model training. 

mini_train/ 

├── images/ 

│   ├── train/        →Contains training images. 

│   └── val/          →Contains validation images. 

├── labels/ 

│   ├── train/       → YOLO-format label files for training images. 

│   └── val/          →YOLO-format label files for validation images. 

├── annotations/ 

│   ├── instances_train.json  →COCO-style annotations for training. 

│   └── instances_val.json    →COCO-style annotations for validation. 

│Created a data.yaml file 
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Image and label_txt  Extraction 

Python script used to extract exactly 40 images containing the class "plane" from a larger 

DOTA-style dataset.. The script loops through label files in the labelTxt_all folder, searching 

each for the presence of the word "plane". When a match is found, it copies the corresponding 

.png image from images_all and its .txt label file to the destination folders. Once 40 matching 

images and txt are copied, it stops.  
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Splitting data for training and test . 

Once the images and their annotations manually separated  as 30 images for training, 10 for 

validation in subfolders named‘train’ and ‘val’ .  Python script is made use of to split a COCO-

format JSON file (DOTA_1.0.json) into two separate COCO-format JSON files: 

instances_train.json and instances_val.json saved under annotations folder, based on the images 

present in the train and val subfolders within the dataset directory (mini_train). 
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YOLO-based label format conversion 

Taking into account the need for the COCO-format annotations from instances_train.json and 

instances_val.json to be converted into YOLO-format label files for training and validation sets, 

saving them as .txt files in labels/train and labels/val folders within the mini_train directory.The 

python script loads each JSON file, maps image IDs to filenames and dimensions and transforms 

COCO bounding box coordinates (x, y, width, height) into YOLO format (normalized center x, 

center y, width, height). For each image, it writes a corresponding .txt file containing the category 

ID and normalized bounding box coordinates. 
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Single class detection 

Here as I am interested in detecting the presence of an object (aeroplane) rather than distinguishing 

between specific classes. The model can be trained in a way that all .txt label files in the labels/train 

and labels/val directories within the mini_train folder by replacing the first number (class ID) in 

each line with 0.  

 

 

 

Resizing images 

Resizing is necessary because YOLO requires images to be a uniform size for compatibility during 

training and inference resizes images from the train and val folders within the mini_train/images 
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directory to a uniform size of 640x640 pixels, saving the resized images to corresponding 

train_resized and val_resized folders. Using the PIL library,  pads it to the target size with a gray 

background (RGB: 114, 114, 114) to avoid distortion, then saves the result in the output directory. 
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2. Set up and Training 

The installation process for YOLOv8 involved setting up Python 3.9 and installing the 

Ultralytics library using pip install ultralytics, creating a compatible environment for object 

detection. 

 

Training Epochs  

During training, multiple epochs namely 10, 30 and 50 were  carried out to see reduce in 

prediction error . The YOLOv8 framework monitors the validation performance after every 

epoch and saves the model state that performs best as best.pt.  The model best.pt that resulted 

from epoch 50 was used for the detection of aeroplanes in new images. 

 

 

Epoch 10 
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This confusion matrix shows that the model failed to detect any aeroplane instances, predicting 

all of them as background. All 168 true aeroplane labels were misclassified, indicating a 0% 

true positive rate. 

 

               

                      a                                                                                                                            b 

              

 

The verification set(a) contains ground truth, serving as a baseline for assessing how well the 

model has learned to identify aeroplanes. The predicted output(b), on the other hand, shows 

the model’s detection results, which here is none for he epoch10 iterations. 
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Epoch 30 

 

 

This confusion matrix from epoch 30 shows moderate improvement in model performance. 

Out of the total aeroplane instances, 18 were correctly classified (true positives), while 150 

were missed (false negatives), and 59 background instances were mistakenly identified as 

aeroplanes (false positives). 
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a                                                                                                                                            b 

 

 

 

The first image shows the validation (a) with bounding boxes for airplanes. The second image 

displays the YOLOv8 model’s predictions, where the model correctly identifies several 

airplanes with misses and false positives involved.        
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Epoch 50 

 

 

The confusion matrix from epoch 50 shows a noticeable improvement in model performance. 

The model correctly identified 29 aeroplane instances (true positives), misclassified 139 as 

background (false negatives), and mistakenly predicted 230 background instances as 

aeroplanes (false positives). Compared to earlier epochs, the increase in true positives suggests 

better learning. 
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Validation vs predicted results for epoch 50 reveal improved model performance compared to 

earlier epochs. The predicted outputs (right) show more detection of aeroplanes but not entirely 

without misclassification. 

 

 

Prediction 

 

In order to test the prediction, In this project, prediction was achieved by loading the trained 

model (specifically the best.pt file from 50 epochs trained on YOLOV8s version) and applying 

it to input images. A Python script was used to run inference on each image with a set 

confidence threshold and the model output annotated predictions and corresponding text files 

showing the detected bounding boxes and class labels. 
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Confidence threshold variations 

On running prediction on three same input images using different confidence thresholds (0.4, 0.5, 

and 0.25).  

        

CF= 0.4                                                                                                                 CF=0.5  
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                                                                                              CF=0.25  

At 0.4, slightly more objects are detected with moderate confidence. At 0.5, only confident 

detections are shown, hence comparatively less airplanes detected.. At 0.25, even low-confidence 

predictions are included, increasing the number of boxes but also potentially introducing more 

false detections. This illustrates how lowering the threshold increases sensitivity at the cost of 

precision. 

 

3. Interacting environment 

To set up an interactive YOLOv8 environment, a Conda environment named drone_yolo_env was 

created with Python 3.9 and all necessary packages such as ultralytics, jupyterlab, and ipython 

were installed. The environment was linked to Jupyter using ipykernel to enable kernel switching. 

Within JupyterLab, a notebook (demo.ipynb) was used to load and visualize drone images, 

employing IPython.display.Image to render the predictions interactively, supporting quick testing 

andvalidation. 
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Activating  the drone_yolo_env Conda environment and navigating to the YOLO demo project 

directory. Enables launching  JupyterLab to run and interact with the project notebooks. 

 

Verification and Display 

 

In this JupyterLab environment, a notebook named demo.ipynb is used to visually inspect an input 

image before making predictions. The script utilizes IPython’s display and Image modules to 

define the image path (P1116.png) and render it inline within the notebook interface. 
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Loads and displays a sample input image using the IPython.display module in JupyterLab. By 

specifying the file path of the image (P1116.png), the script renders the aerial image inline, 

allowing the user to visually confirm the image content before running detection. 

 

 

Cell2 performs object detection using a YOLOv8 model within a Jupyter notebook. It defines the 

model and output paths, removes any existing output folder, loads the trained model (best.pt), and 

runs predictions on a specified image with a confidence threshold of 0.45. Finally, it displays the 

resulting annotated image inline using the IPython.display module, enabling easy visualization of 

the detected objects. 
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Conclusion 

This project  demonstrates the use of deeplearning model (YOLOV8) for object detection on a 

subset of the DOTA-v1.0 dataset, specifically targeting aeroplane detection. The workflow 

involved dataset preparation, format conversion to COCO, training the model over 50 epochs, and 
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evaluating predictions using visual outputs and confusion matrices. An interactive JupyterLab 

environment was created to support testing and visualization. While the model showed progressive 

improvement, the project also leaves rom for future enhancements. 

 

Improvements and potential application  

 

To improve this project, incorporating more training images would enhance model generalization. 

While YOLOv8s was used, experimenting with YOLOv8m can  yield better. Increasing training 

epochs could further refine performance. Adjusting the confidence threshold allows for better 

precision-recall balance. Extracting object coordinates and overlaying them on a map could 

provide spatial insights, enabling real-world applications like infrastructure monitoring or 

geolocation tagging. 

 

A potential application is collecting drone images, just as YOLOv8 was used to detect aeroplanes 

from imagery, employ similar approach to identify and analyze electric poles. By detecting poles 

and examining the geometry of their bounding boxes or fitted lines, it becomes possible to estimate 

their slant or tilt angles. This transformation of visual data into quantitative knowledge enables the 

assessment of pole alignment, valuable in monitoring  hazards and planning maintenance. 
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In addition to these references, I have used  ChatGPT and Grok as AI assistants to help with my 

project. ChatGPT was used for writing and debugging Python scripts_for tasks namely extracting 

images and label txt, converting annotations to COCO format and data dimension correction. I 

used Grok for quick summaries to keep track of the progress of the project in between different 

stages. 

 

 

 

 

 

 

 


