
1

Object detection using DOTA dataset and training using YOLOV8.

Submitted by: Ann Nibana Stephen Lal

` Course: EPPS6323(Knowledge Mining)

Professor: Dr. Karl Ho

2

Object detection using DOTA dataset and training using YOLOV8.

This project focuses on detecting airplanes in aerial imagery using a subset of the DOTA-v1.0

dataset and training a YOLOv8 model. The dataset was converted to COCO format, structured,

and split into training and validation sets. After resolving label and compatibility issues, the model

trained for 50 epochs chosen. Predictions were generated and visualized using a custom output

directory, demonstrating object detection.

Workflow

The workflow included data preparation, format conversion, model training with YOLOv8s and

performance evaluation.

1. Data Preparation and Processing

The dataset preparation began by acquiring the DOTA-v1.0 dataset, which includes high-

resolution aerial images and corresponding labelTxt annotations. These annotations contain

object class labels and oriented bounding box coordinates. From this large dataset, a subset of

40 images containing the class "airplane" was selected using a Python script to reduce

computational load and streamline the model training process. This targeted selection ensured

the model would focus solely on detecting airplanes, improving efficiency for a class-specific

object detection task.

Once selected, the data needed to be converted into a format compatible with YOLOv8. Using

the DOTA DevKit, the labelTxt annotations were transformed into the standard COCO format,

producing a DOTA_1.0.json file containing image metadata, bounding boxes and class labels.

The dataset was then split into two subsets: 30 images allocated for training (images/train) and

3

10 for validation (images/validation). COCO-style JSON files were manually or

programmatically generated to align with these splits. This structured preparation ensured

smooth downstream processing with YOLOv8s.

Folder structure

The folder structure is organized to align with YOLOv8’s training requirements. The

mini_train/ directory contains subfolders for images/ and labels/, each divided into train and

val sets, separating training and validation data clearly. The annotations/ folder holds COCO-

format JSON files, which are useful for conversions. A data.yaml file ties everything together

by specifying image paths and class names, enabling model training.

mini_train/

├── images/

│ ├── train/ →Contains training images.

│ └── val/ →Contains validation images.

├── labels/

│ ├── train/ → YOLO-format label files for training images.

│ └── val/ →YOLO-format label files for validation images.

├── annotations/

│ ├── instances_train.json →COCO-style annotations for training.

│ └── instances_val.json →COCO-style annotations for validation.

│Created a data.yaml file

4

Image and label_txt Extraction

Python script used to extract exactly 40 images containing the class "plane" from a larger

DOTA-style dataset.. The script loops through label files in the labelTxt_all folder, searching

each for the presence of the word "plane". When a match is found, it copies the corresponding

.png image from images_all and its .txt label file to the destination folders. Once 40 matching

images and txt are copied, it stops.

5

Splitting data for training and test .

Once the images and their annotations manually separated as 30 images for training, 10 for

validation in subfolders named‘train’ and ‘val’ . Python script is made use of to split a COCO-

format JSON file (DOTA_1.0.json) into two separate COCO-format JSON files:

instances_train.json and instances_val.json saved under annotations folder, based on the images

present in the train and val subfolders within the dataset directory (mini_train).

6

YOLO-based label format conversion

Taking into account the need for the COCO-format annotations from instances_train.json and

instances_val.json to be converted into YOLO-format label files for training and validation sets,

saving them as .txt files in labels/train and labels/val folders within the mini_train directory.The

python script loads each JSON file, maps image IDs to filenames and dimensions and transforms

COCO bounding box coordinates (x, y, width, height) into YOLO format (normalized center x,

center y, width, height). For each image, it writes a corresponding .txt file containing the category

ID and normalized bounding box coordinates.

7

Single class detection

Here as I am interested in detecting the presence of an object (aeroplane) rather than distinguishing

between specific classes. The model can be trained in a way that all .txt label files in the labels/train

and labels/val directories within the mini_train folder by replacing the first number (class ID) in

each line with 0.

Resizing images

Resizing is necessary because YOLO requires images to be a uniform size for compatibility during

training and inference resizes images from the train and val folders within the mini_train/images

8

directory to a uniform size of 640x640 pixels, saving the resized images to corresponding

train_resized and val_resized folders. Using the PIL library, pads it to the target size with a gray

background (RGB: 114, 114, 114) to avoid distortion, then saves the result in the output directory.

9

2. Set up and Training

The installation process for YOLOv8 involved setting up Python 3.9 and installing the

Ultralytics library using pip install ultralytics, creating a compatible environment for object

detection.

Training Epochs

During training, multiple epochs namely 10, 30 and 50 were carried out to see reduce in

prediction error . The YOLOv8 framework monitors the validation performance after every

epoch and saves the model state that performs best as best.pt. The model best.pt that resulted

from epoch 50 was used for the detection of aeroplanes in new images.

Epoch 10

10

This confusion matrix shows that the model failed to detect any aeroplane instances, predicting

all of them as background. All 168 true aeroplane labels were misclassified, indicating a 0%

true positive rate.

 a b

The verification set(a) contains ground truth, serving as a baseline for assessing how well the

model has learned to identify aeroplanes. The predicted output(b), on the other hand, shows

the model’s detection results, which here is none for he epoch10 iterations.

11

Epoch 30

This confusion matrix from epoch 30 shows moderate improvement in model performance.

Out of the total aeroplane instances, 18 were correctly classified (true positives), while 150

were missed (false negatives), and 59 background instances were mistakenly identified as

aeroplanes (false positives).

12

a b

The first image shows the validation (a) with bounding boxes for airplanes. The second image

displays the YOLOv8 model’s predictions, where the model correctly identifies several

airplanes with misses and false positives involved.

13

Epoch 50

The confusion matrix from epoch 50 shows a noticeable improvement in model performance.

The model correctly identified 29 aeroplane instances (true positives), misclassified 139 as

background (false negatives), and mistakenly predicted 230 background instances as

aeroplanes (false positives). Compared to earlier epochs, the increase in true positives suggests

better learning.

14

Validation vs predicted results for epoch 50 reveal improved model performance compared to

earlier epochs. The predicted outputs (right) show more detection of aeroplanes but not entirely

without misclassification.

Prediction

In order to test the prediction, In this project, prediction was achieved by loading the trained

model (specifically the best.pt file from 50 epochs trained on YOLOV8s version) and applying

it to input images. A Python script was used to run inference on each image with a set

confidence threshold and the model output annotated predictions and corresponding text files

showing the detected bounding boxes and class labels.

15

Confidence threshold variations

On running prediction on three same input images using different confidence thresholds (0.4, 0.5,

and 0.25).

CF= 0.4 CF=0.5

16

 CF=0.25

At 0.4, slightly more objects are detected with moderate confidence. At 0.5, only confident

detections are shown, hence comparatively less airplanes detected.. At 0.25, even low-confidence

predictions are included, increasing the number of boxes but also potentially introducing more

false detections. This illustrates how lowering the threshold increases sensitivity at the cost of

precision.

3. Interacting environment

To set up an interactive YOLOv8 environment, a Conda environment named drone_yolo_env was

created with Python 3.9 and all necessary packages such as ultralytics, jupyterlab, and ipython

were installed. The environment was linked to Jupyter using ipykernel to enable kernel switching.

Within JupyterLab, a notebook (demo.ipynb) was used to load and visualize drone images,

employing IPython.display.Image to render the predictions interactively, supporting quick testing

andvalidation.

17

Activating the drone_yolo_env Conda environment and navigating to the YOLO demo project

directory. Enables launching JupyterLab to run and interact with the project notebooks.

Verification and Display

In this JupyterLab environment, a notebook named demo.ipynb is used to visually inspect an input

image before making predictions. The script utilizes IPython’s display and Image modules to

define the image path (P1116.png) and render it inline within the notebook interface.

18

Loads and displays a sample input image using the IPython.display module in JupyterLab. By

specifying the file path of the image (P1116.png), the script renders the aerial image inline,

allowing the user to visually confirm the image content before running detection.

Cell2 performs object detection using a YOLOv8 model within a Jupyter notebook. It defines the

model and output paths, removes any existing output folder, loads the trained model (best.pt), and

runs predictions on a specified image with a confidence threshold of 0.45. Finally, it displays the

resulting annotated image inline using the IPython.display module, enabling easy visualization of

the detected objects.

19

Conclusion

This project demonstrates the use of deeplearning model (YOLOV8) for object detection on a

subset of the DOTA-v1.0 dataset, specifically targeting aeroplane detection. The workflow

involved dataset preparation, format conversion to COCO, training the model over 50 epochs, and

20

evaluating predictions using visual outputs and confusion matrices. An interactive JupyterLab

environment was created to support testing and visualization. While the model showed progressive

improvement, the project also leaves rom for future enhancements.

Improvements and potential application

To improve this project, incorporating more training images would enhance model generalization.

While YOLOv8s was used, experimenting with YOLOv8m can yield better. Increasing training

epochs could further refine performance. Adjusting the confidence threshold allows for better

precision-recall balance. Extracting object coordinates and overlaying them on a map could

provide spatial insights, enabling real-world applications like infrastructure monitoring or

geolocation tagging.

A potential application is collecting drone images, just as YOLOv8 was used to detect aeroplanes

from imagery, employ similar approach to identify and analyze electric poles. By detecting poles

and examining the geometry of their bounding boxes or fitted lines, it becomes possible to estimate

their slant or tilt angles. This transformation of visual data into quantitative knowledge enables the

assessment of pole alignment, valuable in monitoring hazards and planning maintenance.

21

 References

Fei Feng, Yu Hu et al.Improved YOLOv8 algorithms for small object detection in aerial imagery.

https://doi.org/10.1016/j.jksuci.2024.102113

Jocher, G., et al. (2023). YOLOv8 by Ultralytics,

GitHub Repository: https://github.com/ultralytics/ultralytics/issues/8837

Jun Deng et al (2020), A review of research on object detection based on deep learning.

 J. Phys.: Conf. Ser. 1684 012028.

Solawetz, J. Francesco. 2023. "What is YOLOv8? The Ultimate Guide." Blog post.

https://blog.roboflow.com/what-is-yolov8/

DOTA-v2 dataset for oriented bounding boxes (OBB). Ultralytics.

https://docs.ultralytics.com/datasets/obb/dota-v2/

Tsung-Yi Lin Michael Maire (2015)Microsoft COCO: Common Objects in Context

https://arxiv.org/pdf/1405.0312

Mupparaju Sohan,Thotakura Sai Ram et al(2024).A Review on YOLOv8 and Its Advancements

10.1007/978-981-99-7962-2_39

https://doi.org/10.1016/j.jksuci.2024.102113
https://github.com/ultralytics/ultralytics/issues/8837
https://blog.roboflow.com/what-is-yolov8/
https://docs.ultralytics.com/datasets/obb/dota-v2/
https://arxiv.org/pdf/1405.0312
https://www.researchgate.net/scientific-contributions/Mupparaju-Sohan-2270802614?_sg%5B0%5D=z02vLs4llrxo_8kJur-myo0jqadHzTmQABVV6lqMTcdBcQZSpEHyYwCIlEfzwcMn5-Spqe8.hPZlbldTEcJo6tpbR0lrDepwYfnBpeR88IjZQfRCEZzuuM99Bg8MA8IvWO1HP4hqRWYNtQFqVY4cOfyqdz_y0g&_sg%5B1%5D=GOpjjk6weUtgi60D5ZkD1E3mYGaOs3uhJkQHvHh0HxZUqqfMkFqxDeR__-Em4iu5nvXkiEg.v04_sUNH9NBFJEruMqRK3L0UnCeXZ0IS1NK-ZPgPglPqaOf4NhdTVt08zB6DlR4RvpO-oKjXVWNxoGEJHLhv7Q
https://www.researchgate.net/scientific-contributions/Thotakura-Sai-Ram-2270804098?_sg%5B0%5D=z02vLs4llrxo_8kJur-myo0jqadHzTmQABVV6lqMTcdBcQZSpEHyYwCIlEfzwcMn5-Spqe8.hPZlbldTEcJo6tpbR0lrDepwYfnBpeR88IjZQfRCEZzuuM99Bg8MA8IvWO1HP4hqRWYNtQFqVY4cOfyqdz_y0g&_sg%5B1%5D=GOpjjk6weUtgi60D5ZkD1E3mYGaOs3uhJkQHvHh0HxZUqqfMkFqxDeR__-Em4iu5nvXkiEg.v04_sUNH9NBFJEruMqRK3L0UnCeXZ0IS1NK-ZPgPglPqaOf4NhdTVt08zB6DlR4RvpO-oKjXVWNxoGEJHLhv7Q&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
http://dx.doi.org/10.1007/978-981-99-7962-2_39

22

In addition to these references, I have used ChatGPT and Grok as AI assistants to help with my

project. ChatGPT was used for writing and debugging Python scripts_for tasks namely extracting

images and label txt, converting annotations to COCO format and data dimension correction. I

used Grok for quick summaries to keep track of the progress of the project in between different

stages.

